ES2501

	Configuration 1	Configuration 2
Cable Sector, Location (x,y) in meters, A	2,(11,-5)	4,(11,-13)
B	6,(-5,-14)	7,(3,-19)
C	8,(6,-12)	8,(6,-12)
Height of Balloon (m)	59.60	77.00
Vector, bA (m)	11 i-5j- 59.60 k	11 i -13 j -77.00 k
bB (m)	-5 i -14 j -59.60 k	3i-19j-77.00 k
bC (m)	6 i -12 j -59.60 k	6 i -12 j -77.00 k
Length bA (bA =V(A _x ² + A _y ² + A _z ²) (m)	60.81	78.86
bB (bB = $V(B_x^2 + B_y^2 + B_z^2)$ (m)	61.43	79.37
bC (bC = $V(C_x^2 + C_y^2 + C_z^2)$ (m)	61.09	78.16
Total Length (bA+bB+bC) (m)	183.33	236.39
Cost of Cable (\$75/m*Total Length)	\$13,749.75	\$17,729.02
Unit Vector of F _A (bA/ba)	.181 i 082 j 980 k	.139 i 165 j 976 k
u F _B (bB /bB)	081 i 228 j 970 k	.038 i 239 j 970 k
u F _c (bC /bC)	.098 i 196 j 976 k	.077 i 154 j 985 k
Required Resultant Force (N)	100 i -200 j -1000 k	100 i -200 j -1000 k
X-Balance Equation	.181F _A 081F _B +.098F _C =100	.139F _A +.038F _B +.077F
Y	082F _A 228F _B 196F _C =-200	$165F_{A}239F_{B}154F_{B}$
Z	980F _A 970F _B 976F _C =-1000	976F _A 970F _B 985F
F _A (N) (using equation solver)	14.62	595.63
F _B (N)	10.46	415.00
F _C (N)	999.93	16.03
Cost of A	\$250	\$500
B	\$10,000	\$1,000
C	\$500	\$500
Total Construction Cost	\$10,750	\$2,000
Cost of Balloon	\$125,000	\$125,000
Total Cost (Constn+Balloon+Cable)	\$149,499.75	\$144,729.02
Power Revenue (\$5/meter/day*height)	\$298/day	\$385/day
Payback Time (Total Cost/Power Rev)	502 days	376 days
Social Impact Score A	-3	-6
B	+8	-4
C	0	0
Net SIS	+5	-2

Wind Turbine Project

Configuration 1

Zone	Construction Cost	Social Impact Score
1	\$5000	-4
2	\$250	-3
3	\$400	-4
4	\$500	-6
5	\$1,000	-4
6	\$10,000	+8
7	\$1,000	+4
8	\$500	0

 $F_{\rm C} = 100$ $F_{c} = -200$ $F_{\rm C} = -1000$

Configuration 2

Note: All coordinates are from the point directly below the balloon (0,0,0).

Configuration A

Optimizing Social Impact Score

Zones used: 2, 6, 8 Height: 70 m

Position vectors: Length of cables: C₂: 70.89 m $r_{z2} = 10i - 5j - 70k m$ C₆: 72.10 m $r_{z6} = -3i - 17j - 70k m$ C₈: 72.97 m $r_{z8} = 8i - 19j - 70k m$

Equations:

 $\Sigma F_x : -100 + (0.141)F_{z2} - (0.042)F_{z6} + (0.110)F_{z8} = 0$ $\Sigma F_v : 200 - (0.071)F_{z2} - (0.236)F_{z6} - (0.260)F_{z8} = 0$ ΣF_{z} : 1000 - (0.987) F_{z2} - (0.971) F_{z6} - (0.959) F_{z8} = 0

 $F_{z2} = 339.917 \text{ N}$ $F_{z6} = 157.446 \text{ N}$ $F_{z8} = 533.494 \text{ N}$

Cost of build: Balloon: \$125,000 Cables: $(\$75/m)(C_2 + C_6 + C_8) = \$16,197$ Zones: \$10,750 Total: \$151,947

Revenue:

Revenue per day: (\$5/m)(70 m) = \$350Payback time: $\frac{(Total \ cost \ of \ build)}{(Revenue \ per \ day)} = 434 \ days \sim 1.2 \ year$

Social Impact Score: +5

Breakin' Wind in Sub Saharan Africa

Group E1A:

Costs and Social Impact Scores of Zones

Zone	Construction Cost	Social Impact Score
1	\$5000	-4
2	\$250	-3
3	\$400	-4
4	\$500	-6
5	\$1,000	-4
6	\$10,000	+8
7	\$1,000	+4
8	\$500	0

Configuration B

Optimizing Zone Costs

Zones used: 2, 3, 5 Height: 28 m

Equations: $\Sigma F_x : -100 - (0.035)F_{z2} + (0.242)F_{z6} + (0.389)F_{z8} = 0$ ΣF_{v} : 200 – (0.209) F_{z2} – (0.035) F_{z6} – (0.162) F_{z8} = 0

 $F_{z2} = 714.5 \text{ N}$ $F_{z6} = 25.33 \text{ N}$ $F_{z8} = 305.61 \text{ N}$

Cost of build: Balloon: \$125,000 Cables: $(\$75/m)(C_2 + C_6 + C_8) = \6630 Zones: \$1,650 Total: \$133,280

Revenue: Revenue per day: (\$5/m)(28 m) = \$140

Social Impact Score: -11

Group 2 - Poster

Position vectors: $r_{z2} = -1i - 6j - 28k m$

- $r_{z6} = 7i 1j 28k m$ $r_{z8} = 12i - 5j - 28k m$
- ΣF_z : 1000 (0.977) F_{z2} (0.970) F_{z6} (0.907) F_{z8} = 0
- Payback time: $\frac{(Total \ cost \ of \ build)}{(Revenue \ per \ day)} = 952 \ days \sim 2.6 \ years$

Length of cables: C₂: 28.65 m C₆: 28.88 m C₈: 30.87 m

Background

One of the largest problems facing sub-Saharan Africa currently is the lack of access to electricity. Bringing electricity to small villages allows residents to efficiently purify their own water, cook without risking fires, and light their homes with more than just daylight. The Alaeros Energies balloon wind tunnel will allow a village the benefits of power at relatively low cost, provided the design will last.

Building Costs and Social Impact Summary

Zone	Construction Cost	Social Impact S
1	\$5000	-4
2	\$250	-3
3	\$400	-4
4	\$500	-6
5	\$1,000	-4
6	\$10,000	+8
7	\$1,000	+4
8	\$500	0

Building Site Map Dense Vegetation

1 grid square = 1 meter Balloon may not be anchored in dense vegetation, on beach, or in a non- numbered zone. **Configuration 1: Orange; Configuration 2: Purple**

Anchor Configuration for Balloon Wind Generator

Proposed configurations

Our first proposed configuration is with one anchor each in Zones 2, 6, and 8. Zone 2 is less desirable because it interferes with rhinoceros migration. However, the desirability of the government-subsidized land in Zone 8, and the positive social impact of Zone 6 require that Zone 2 also be used to reduce the maximum force on the cables helping to anchor the balloon. The second proposed configuration places the same anchors in Zones 2 and 6. However, this configuration moves the third anchor point to Zone 7. Building an anchor point in Zone 7 would help reduce the region's mosquito population. This further increases the social impact of the balloon project. However, in this configuration altitude is limited to 60 m, increasing the payback time.

Calculations

Configuration 1: $\vec{F}_{wind} = -100\hat{\imath} + 200\,\hat{\jmath} + 1000\,\hat{k}\,N$ $\vec{r}_1 = -8\hat{\imath} - 18\hat{\jmath} - 80\hat{k}\ m$ $\vec{r}_2 = 13\hat{\imath} + 5\hat{\jmath} - 80\hat{k} m$ $\vec{r}_3 = 8\hat{\imath} - 19\hat{\jmath} - 80\hat{k} m$ $r_1 = \sqrt{(-8)^2 + (-18)^2 + (-80)^2} = 82.39 m$ $r_2 = 81.20 m$ $r_3 = 82.61 m$ $\Sigma F_{x} = -100 + F_{1} \left(\frac{-8}{82.39} \right) + F_{2} \left(\frac{13}{81.20} \right)$ $\Sigma F_y = 200 + F_1 \left(\frac{-18}{82.39} \right) + F_2 \left(\frac{5}{81.20} \right)$ $\Sigma F_z = 1000 + F_1 \left(\frac{-80}{82.39}\right) + F_2 \left(\frac{-80}{81.20}\right)$ $F_1 = 31.71 N$ $F_2 = 125.25 N$ $F_3 = 865.61 N$ $Price = 75 * (r_1 + r_2 + r_3) + 125,000 + 10,000 + 500 + 250 = \$154,215.00$ Payback time = $\frac{Price}{5 * 80}$ = 386 days **Configuration 2:** $\vec{F}_{wind} = -100\hat{\imath} + 200\,\hat{\jmath} + 1000\,\hat{k}\,N$ $\vec{r}_1 = -8\hat{\imath} - 18\hat{\jmath} - 60\hat{k} m$ $\vec{r}_2 = 13\hat{\imath} + 5\hat{\jmath} - 60\hat{k}\ m$ $\vec{r}_3 = 3\hat{\imath} - 21\hat{\jmath} - 60\hat{k} m$ $F_1 = 39.97N$ $F_2 = 350.86 N$ $F_3 = 657.88 N$ $Price = 75 * (r_1 + r_2 + r_3) + 125,000 + 10,000 + 1000 + 250 = \$150,378.92$ Payback time = $\frac{Price}{5 * 80}$ = 502 days

The social impact of the first proposed solution is +5. The social impact of the second proposed solution is +9. Both have positive social impact, meaning overall the presence of the balloon will positively affect the community.

$$) + F_3 \left(\frac{8}{82.61} \right) = 0$$

$$+ F_3 \left(\frac{-19}{82.61} \right) = 0$$

$$) + F_3 \left(\frac{-80}{82.61} \right) = 0$$

Both of these systems are static, so they will not move in the wind, reducing fatigue on the cables. Assuming the wind stays constant, the overall stress on the cables will never exceed the 1000 N force limit for the cables, so they will likely last several years. Both of these systems also have positive social impact, meaning that despite disruptions to some environments, overall the building of the system will positively impact the community, providing job opportunities and minimal impact on the environment.

Comparison of Configurations

The first configuration will cost approximately \$154,000. The village will be able to pay this figure back in approximately 386 days. The second configuration will cost \$150,000 and will require 502 days to pay back. While both configurations will last a very long time and will provide the necessary power to this community, the first configuration is preferred due to the significantly shorter payback time.

Group 3 - Poster

Social Impact

Benefits