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Abstract.  The complexity of problems that engineers are being asked to solve is increasing 

rapidly. Effective solutions often require the integration of mechanical, electrical, computer 

software, chemical, and/or biological components. In order to manage this complexity, it is 

becoming important for all engineering students to learn how to approach the solutions to these 

problems using a systems perspective (Baldwin 2014). In order to better motivate this approach 

to students the authors are introducing it within courses of their own engineering discipline. 

The authors are adapting traditional systems engineering concepts to create a framework of 

system models that can be introduced into courses of any engineering discipline at any level. 

Through the process of learning how to create these models, students gain an understanding of 

what is meant by a systems perspective and how this perspective can help them to solve 

problems. This paper discusses which systems models were incorporated into undergraduate 

curriculum and how each model is broken-down into pieces that are easier for undergraduates 

to understand and faculty to teach.   

Introduction 

The complexity of modern technology is making it increasingly more common for new 

engineering graduates to work with products and systems involving multiple disciplines and 

domains (Baldwin 2014).  They must have a broader understanding of their job going beyond 

a single domain perspective or an even more limited perspective of a single sub-discipline 

within that domain. More employers are asking for students who understand a systems 

perspective of engineering. Unfortunately, the general idea of a systems perspective is a very 

nebulous concept that can change drastically depending on who is describing that perspective.  

The authors are proposing a model of a systems perspective that is similar to the orthographic 

views in a CAD drawing as shown in Figure 1. In such a CAD drawing, the number of 2D 

views shown is the minimal set that completely captures all of the features of the 3D object. 

Achieving consistency between the views is a way of self-checking for complete coverage of 

those features. When solving open-ended problems, the end result is much more nebulous than 

the 3D CAD object, which means that many more views may be needed to capture all of the 
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important aspects of the solution. In the most basic sense, the authors are defining a systems 

perspective as an ability to see the solution as a system that accepts inputs and/or produces 

outputs and is itself composed of various subsystems. The behavior that is needed to solve the 

problem is understood through the interaction of the various subsystems with the system’s 

inputs and outputs. Applying a systems perspective to solving problems, then, is about 

understanding the many different views of a system, the process of creating those views, and 

the process of making those views consistent with each other in order to achieve a more optimal 

solution (Haskins 2010). 

 

Figure 1. Definition of having a systems perspective as understanding multiple views of a 

system 

In order to help define these views, a core set of technical systems competencies was identified 

in a previous effort (Schindel et al. 2011). These competencies provide a basic skill set that can 

be applied within any discipline and across an entire curriculum. Exposing students to these 

competencies within the context of their discipline enables them to still achieve a high level of 

technical competence within their discipline while showing them the relevance and importance 

of the systems perspective. The set of behaviors that are identified in the technical Systems 

Competencies include: 1. Describing the solution as an interconnection of subsystems but 

also in terms of the target’s interaction with the larger system that surrounds it (a 

functional architecture); 2. Applying a system stakeholder view of value, trade-offs, and 

optimization; 3. Understanding a system’s interactions and states (modes); 4. Specifying 

system technical requirements; 5. Synthesizing a physical architecture from the high-level 

design; 6. Assessing solution feasibility, consistency, and completeness; and 7. Performing 

system failure mode and risk analysis (Schindel et al. 2011). 

The field of model based systems engineering (MBSE) has produced a framework and standard 

vocabulary for applying these behaviors in order to create tangible model-based representations 

of projects (Buede 2000). The models developed are generally graphical, making it easier to 

see relationships between different system-level aspects of a solution. In addition to facilitating 

student learning, taking a model-based approach provides significant advantages to faculty. 

Having a standardized procedure for creating the models and vocabulary for describing them 

means that pedagogy can be developed that will be applicable to all types of projects and 

disciplines. The regular structure and appearance of the models across vastly different projects 

makes it much easier for faculty to guide students through a solution process with meaningful 

feedback. The model structure also makes it much easier to more fairly assess the students’ 

final results using standardized rubrics.  



 

This paper describes how the authors have adapted formal MBSE approaches to make them 

more accessible to undergraduate engineering students from several engineering disciplines. 

The models and approach to developing them provide students with opportunities to practice, 

assess, and refine the technical systems competencies. The authors represent several different 

academic departments and have developed pedagogical materials for different academic levels 

and disciplines, illustrating that these competencies have relevance to engineering education in 

a very general sense. Rather than creating a separate course to introduce these concepts, they 

have been included as supplementary content in already existing courses. The application of 

these competencies has yielded measurable improvements in student understanding of system 

related issues.  

The authors would also like to acknowledge that many of the ideas and models presented in 

this paper are described with terminology that might be used slightly differently than in 

traditional systems engineering. The authors are not trying to suggest changing any of the 

traditional definitions or to push for any new standardization; however, we found these changes 

helpful when describing these concepts to undergraduate students, who have limited 

background knowledge or experience. The authors encourage the reader to adapt these ideas in 

whatever way is most comfortable. Terms that were intentionally chosen and adapted to this 

framework are highlighted by italics the first time they are used. Definitions for each of these 

terms are also provided when they are first used in order to describe the authors’ intended 

meaning in the context of this framework.  

Descriptions of the System Models and Design Process 

This section describes each of the different models that were developed, the processes that 

students would go through to create them, and the assessment tools that faculty and students 

would use to assess them. The models are presented in the order in which they are introduced 

to the students as shown in the top-down linear progression with feedback in Figure 2 (Schindel 

2011a). The authors have found this order to be helpful in the sense that it gradually exposes 

the students to new concepts and puts emphasis on the ultimate goal of satisfying the 

Stakeholders’ needs. However, strong emphasis is placed on the central idea that the optimal 

solution is reached when all of the different models are consistent, not when a particular design 

process is completed. As such, system design is a continual process of iteration and revision of 

models, and then cross checking for consistency. Once the models are well understood, the 

design process can be thought of as more of a circular process rather than linear as indicated 

by the illustration on the right in Figure 2.  

 

Figure 2. Models for the process that was used to present systems competencies to students 

and faculty.  

Stakeholders & 
Features 

Interactions  

Functional 
Architecture 

Physical 
Architecture 

Technical 
Requirements 

Stakeholders & Features 

Interactions Model 

Functional Architecture 

Technical Requirements 

Physical Architecture 



 

The authors have found it helpful to first expose students to these systems concepts using a 

familiar example, which for this paper will be a remote control for consumer electronics. These 

examples are being vetted in undergraduate engineering courses at the authors’ institution and 

also in workshops that introduce these concepts and models to other faculty. These examples 

and the pedagogical theory behind them are continually being refined as the authors are 

discovering new ways to think about and present them. One of the biggest challenges to 

presenting these concepts to undergraduates and other faculty is to simplify them as much as 

possible without losing the meaning.  

Stakeholder and Feature Model 

One of the bad habits that the authors have observed in undergraduate engineering students is 

a strong tendency to begin constructing a solution without fully understanding who the 

stakeholders are and what it is that they want. Without knowledge of the stakeholders and 

features that they desire, it is difficult to understand when a solution is achieved much less the 

quality of the solution. Without some sense of what is more or less valuable to the quality of 

the solution, it is difficult for students to make design decisions. The purpose of this first model 

is to help students understand what is valued from the solution to the problem. 

One of the first steps in creating a stakeholder and feature model is to identify stakeholders as 

the individuals or groups that have vested interest in the outcome of the project/problem.  To 

help students identify stakeholders the following probing questions were found to be beneficial: 

1) Who is dissatisfied with the current situation?; 2) Who is affected by changing the situation?; 

3) Who will authorize a change in the situation?; 4) Who benefits from a solution?; 5) Who 

benefits from no solution being enacted?; 6) Who is affected if we fail to enact a solution?; 7) 

Who is affected if our solution fails? 

A master list of common stakeholders is provided to the students to ensure that they didn’t miss 

a key stakeholder. Common stakeholders include: end users, clients, other engineers or 

scientists, regulatory agencies, those who maintain/repair/update, societal groups (i.e. 

government, police/fire departments, new generation of teenagers), manufacturers, shipping 

departments, marketing/sales/retail departments, legal departments, and those responsible for 

disposal/deletion of the software.  

Table 1 shows a sample list of stakeholders for the remote control example. This part of the 

model is a simple table that identifies each stakeholder, assigns each a level of importance, and 

provides a more detailed description. Typically students are capable of developing a list of 

stakeholders with relative ease. The definition of each stakeholder is an important part of the 

model because it forces students to fully identify the stakeholder and eliminate ambiguity. For 

example, if the students simply list “manufacturer” without a definition, they could be talking 

about the remote control manufacturer or the television manufacturer that wants to include the 

remote with their television. The Importance column is included in order to help students 

understand how to make design decisions with respect to the stakeholders. Those stakeholders 

who are more important should have more influence when making decisions.   

The next step to develop the model is to identify features. Features are characteristics of the 

system that are valued by stakeholders—they express the value space/ fitness space/tradeoff 

space of the stakeholder. Features should be written in stakeholder language and typically 

include “-able” words. Some of the more common features include: something to describe the 

project’s primary purpose, affordable, small-size/form factor/weight/compactness, easy to use, 

adaptable, recyclable, secure, robust, efficient, environmentally friendly, simple, and 

repairable.  Table 2 shows some of the features that are associated with the remote control 



 

example. Single words or phrases are helpful when referring back to the features, but they are 

insufficient to fully capture the value of the feature in the stakeholders’ language. Defining 

each feature in more detail is important to help students clarify and better communicate what 

they value. 

It is important for students to understand that features provide different levels of value to the 

stakeholders. Students and engineers often like to include a large number of features in a system 

design. It may not be possible to implement all of the features in the first version of the solution. 

In some cases, interesting technical features may be included that provide little or no value.  

Often students will forget to include the primary purpose of their project/problem they are 

trying to solve when listing features.   

Table 1. Stakeholder model including a description of the stakeholder and ranking of the 

level of importance 

Stakeholder  Importance Description 

Consumer highest 

The end user who purchases the remote control; physically interacts 

with the remote device to complete tasks such as turning on the TV 

with the remote, changing channels, (etc.) 

Manufacturer moderate The company responsible for manufacturing the remote 

Table 2. Features desired by the stakeholders along with descriptions of the feature 

Feature  Feature Definition 

Controllable 
The remote must have the necessary interfaces for controlling consumer electronic devices 

that were produced from 1990-2020. 

Versatile 
The remote should be able to control a wide variety of features for consumer electronic 

devices produced from 1990-2020.  

Durable 
The remote must continue functioning normally despite harsh environmental disturbances 

such as spilled liquids, being dropped, and being chewed on by animals and babies.   

Programmable 
The remote should be programmable in order to produce the required control signals for the 

different consumer electronic devices.  

After creating these lists, the students create a graphical model (see Figure 3) that maps the 

stakeholders to the features that each stakeholder desires. By developing a comprehensive list 

of stakeholders and features, students may be able to notice conflicts between features and/or 

the complexity of the required design in order to meet all of these features.  For example, 

although the recycler would like the product to be easily recyclable the durability requested by 

the consumer might prevent the most optimal material for recyclability to be selected.  At this 

point in the process, the students should be able to have fruitful conversations with their clients 

or key stakeholders to prioritize features. 

To help the students self-assess their work, a rubric is provided to the students, as shown in 

Table 3. The rubrics are divided into Objective goals, which are almost binary in nature, and 

Qualitative goals, which are more subjective. The Objective Goals are meant for the students 

to apply themselves in order to help guide their efforts as they are developing the models. By 

applying these rubrics, the first versions of the models that the students create are more 

complete than they would be otherwise. As such, faculty assessment of the models can focus 

less on the models’ surface-level appearance and more on the quality of the model to fully 



 

represent the solution. The Qualitative Goals are meant more for the instructor or an 

experienced engineer to use for this higher-level assessment of the models. 

 

Figure 3. Stakeholder/feature model mapping stakeholders to their desired features 

Table 3. Rubrics to assess the Stakeholder/Feature model   

Objective Goals Check 

Relevant stakeholders from the master list are included in the model  

Relevant features from the master list are included in the model  

The primary intended purpose of the solution is included as a feature  

Each identified feature has a least one stakeholder  

Each identified stakeholder is mapped to at least one feature  

The team has identified a subset of the most important stakeholders and features  

Each identified stakeholder and feature is given a definition  

Qualitative Goals  

The solution would be satisfactory if it had only these stakeholders and features  

The mapping of features to stakeholders is complete  

Interactions and Functional Architecture 

Another consequence of the students’ tendency to rush into the physical solution is that they 

do not have a clear idea of what constitutes the system boundary. For example, in the remote 

control example, the power supply could be something that is part of the solution space, or it 

could be outside the solution as something that the end consumer supplies. Even if the students 

have some idea of what the boundary is, they tend to focus only on the design inside the system 

boundary and ignore what is going on outside the system. For example, they may begin the 

project by purchasing parts and building things, without considering how the user will interact 

with the remote. The next three modeling steps are closely intertwined and help students to 

identify the system boundary and then describe the system both looking into the boundary from 

the outside and also looking out of the boundary from the inside.  

The first step includes identifying and defining actors.  Actors are physical entities that interact 

with the system. An important distinction for students is that actors are described by nouns and 

generally provide and/or accept energy, materials, or information from the system of interest. 

It is helpful to keep the focus of a model limited to a particular concept or idea. The authors 

have observed students mixing several different ideas into a model, which makes it difficult to 

interpret what a model means. For example, students often try to call “Repair” an actor, which 

is a behavior rather than a thing that interacts with the system. Limiting actors to be nouns 

helps students to focus on what an actor is. Some of the stakeholders listed may be actors but 



 

actors include more than simply people. Actors can include environmental factors such as wind, 

rain, and/or other devices that physically come into contact with the system being designed.  

Table 4 shows an example of actors that interact with the remote.   

Table 4. Examples of actors along with a definition of each actor 

Actor Name Definition 

User The person using the remote 

Wall Outlet The outlet that is used to recharge the battery 

Assembly Worker Personnel who assembles the remote 

Unintended Actors 

Objects and entities that are not intended to interact with the remote, but could have 

significant impacts on the remote. Examples include hard surfaces, the environment, 

babies, animals, other electronic equipment, etc. 

Once actors are identified, the inputs and outputs (I/Os) are determined.  The I/Os describe 

what is being transferred between actors and the system. I/Os are also limited to be described 

with nouns. Common I/Os include: signals, power, energy, force, information, mass, light, heat 

voltage, and current. I/Os describe what is being transferred between two or more entities that 

are playing “roles” in the interaction. Each actor is responsible for at least one I/O if not more.  

Table 5 shows examples of I/Os for the remote control system. 

Table 5. Examples of I/Os for the remote system  

I/O Name Definition 

User Requests 
User commands that are supplied to the remote. These could be in the form of touch, 

pushing buttons, voice commands, hand motions, etc.  

Electric Power IN Electrical power from the wall outlet that is used to recharge the power source 

Unintended Inputs 

Any mass, force, environmental change that is unintended as an input to the system. 

Examples include impact forces from dropping the remote onto a hard surface, saliva from 

babies and other animals, and spilling drinks onto the remote.  

The students can now develop a black-box model of the system architecture which displays all 

of the actors on the outside of the system, as well as the I/Os that are being transferred between 

the actors and the system. Figure 4 shows a generalization of a black-box model of a system. 

At this point in the modeling process the students don’t yet know exactly how the actors interact 

with the system, or how the system’s inputs are converted into the outputs. For example, 

students might know that a voice signal or a physical push ought to somehow be supplied to 

the system, but they have not defined how the remote control will transform those input signals 

into an output that can control consumer devices.   

Using the black-box model, students can identify how each actor interacts with the system. An 

interaction is another modeling construct that describes exchanges of information, materials, 

or energy between the actor and the system. In order to help students focus on what interactions 

mean, the names of interactions are limited to verbs followed by nouns. Often many 

interactions must be defined to fully describe a system. The Interactions model is a table that 

lists and describes all of the different interactions at the black-box level. At this stage in the 

process, no internal system detail has been developed so all interactions occur between actors 

and the system in general or between different actors.  



 

 

Figure 4. Black-box model of the system 

Table 6 provides two of the interactions in an Interactions model for the remote control 

example. The Actors, System I/Os, and Features columns are added to the table in order to 

facilitate cross-checking between models. Every actor and I/O should be included in at least 

one interaction, and if not, then one or the other is not necessary. In order to ensure that the 

entire feature set is covered by the model, each feature should be associated with at least one 

interaction and every interaction should be associated with a feature. This Interactions Model 

can be generated by systematically looking at each actor and I/O and thinking of all the different 

ways that it interacts with the system. 

Table 6. Examples of how interactions are represented. 

Interactions Description Actors  System I/Os Features 

Change Settings 
The user adjusts all possible 

device settings such as volume, 

channel, and guide navigation and 

the remote responds with the 

system state of the devices and 

the remote 

User 

Consumer 

Electronic 

Device 

User Requests 

Com Signal 

Controllable 

Versatile 

Usable 

Voice Activated 

Recharge the 

battery 

The user connects the remote to 

the power grid and the remote 

signifies the user when the power 

supply is fully charged. 

User 

Wall Outlet 

Power Grid 

Plug Forces 

Electrical Power IN 

System State Info 

 

Rechargeable 

Remote 

Control

System State Info

User

User Requests

Consumer

Electronic

Devices

Com Signal

Com Signal

System State Info

 

Figure 5. Example of a sequence diagram for the Change Settings interaction. 

A way to help students think about and define a particular interaction is through the 

development of a sequence diagram. A sequence diagram depicts the order of exchange of 

inputs and outputs between actors and the system. A sample sequence diagram for the Change 

Settings interaction for the remote control system is shown in Figure 5. The vertical lines 

represent the system and each actor that is involved in the interaction. The exchange of I/Os 



 

(represented as the arrows) describe the temporal order from top to bottom of exchanges during 

the interaction. 

A set of binary rubrics similar to Table 3 were also developed for the Interactions model. These 

rubrics help students to ensure that 1) every actor and I/O is included in at least one interaction, 

2) every interaction is named as a verb followed by a noun, 3) Every interaction includes at 

least one or more actors and I/Os, 4) every feature is addressed by at least one interaction, and 

5) the primary purpose of the system is represented as an interaction. The qualitative goal is to 

ensure that the interactions are sufficient to fully cover the feature set.  

Creating the Functional Architecture 

Once the students have identified how the system interacts with what is outside of the system 

boundary, they are asked to think about how the system internally implements those 

interactions. Again students have a tendency to jump to a physical solution so the next models 

are intended to keep them thinking at a higher level in order to facilitate exploring different 

design tradeoffs. The students are asked to decompose the system into its basic functions and 

describe them in the Functional Architecture. A function is a transformation of one or more 

inputs into one or more outputs. Functions may act on I/Os at the system boundary, but also 

may interact with other functions inside the system boundary. Because functions define the 

relationships between inputs and outputs independent of the physical form, the students are 

taught that functions are described with a verb followed by nouns, not as physical objects. 

The scope of the Functional Architecture depends upon the system mode, which is an 

operational capability of a system (i.e., on, off, hibernate). The primary mode of interest is the 

general operational state, but students are encouraged to think about behaviors that will occur 

during other modes of the system’s lifecycle. For example, testing for quality control is a 

different mode than the operational state. An effective solution will need to consider how the 

system will behave during testing, but if all of the unique actors and functions of the testing 

mode are included, the Functional Architecture could become so complicated that it would be 

less useful. To achieve a compromise, students are asked to represent behaviors, actors, and 

I/Os from these other modes as simply as possible. An example related to testing might be to 

include a single actor and I/O that represents all of the test equipment and all of the test signals 

that transfer between the system and the test equipment. The interaction of all of the functions 

must describe the overall behavior of the system for the specified mode(s).  

The physical structure of the Functional Architecture consists of functional blocks inside the 

system boundary of the black-box model to create the white-box model and a table that 

identifies and describes each of the functions. Figure 6 shows a possible Functional 

Architecture for the remote control system and describes a subset of the functions. As indicated 

by the Function column, we utilize the “function is a verb followed by a noun and not a physical 

object” syntax. This allows students to be more flexible on what the “Control Battery 

Charging” function really means and to explore different ways of implementing this behavior. 

Note in the description column that the function is described for two different system modes: 

operating mode in which the remote is being used by a user, as well as the testing mode when 

the remote is being tested for final use. While the description of the function does not presume 

any specific physical form, each function must address some of the stakeholder features 

identified in an earlier step. Those specific features will help to guide the functional 

decomposition and the mapping of the functions onto the physical architecture. 
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Function Description I/Os Feature(s) 

Control 

Battery 

Recharging 

Takes Electrical Power IN from Wall Outlet and 

converts it into an Electrical Power OUT that is 

compatible with recharging the Battery. 

Mechanical Forces are applied between the Wall 

Outlet and the remote control system by the 

object that transfers energy from the wall outlet to 

the system. Monitors the Battery Level and 

communicates that information to the Controls 

Information function. Must accept and provide 

Test Signals during quality control testing. 

Plug Forces  

Electric Power IN  

Electric Power OUT 

Battery Level 

Rechargeable 

Figure 6. A functional architecture and an example of a function definition for the remote 

control system. 

In the process of developing the functional architecture, students must also think about 

developing or deriving new inputs and outputs, ones that are internal to the system, and that 

connect different functional blocks. Notice also that the functional architecture in Figure 6 

contains functions and actors that are related to several system life-cycle stages, namely, 

operational, testing, assembly and recycling, and marketing and distribution. A separate 

functional architecture could be developed for each of these life cycle stages if more detailed 

functions were needed.  

A set of binary rubrics similar to Table 3 were also developed for the Functional Architecture 

model. These rubrics help students to ensure that 1) every I/O at the system boundary goes to 

a functional block, 2) the system and each function block has at least one I/O, 3) the primary 

purpose of the system is represented, 4) each actor, I/O, and function has a definition, 5) each 

actor and I/O is labeled as a noun, and 6) each function is labeled as a verb followed by a noun. 

The qualitative goal is to ensure that the functional architecture is sufficient to satisfy the 

feature set. 



 

Writing Technical Requirements 

Within the context of traditional undergraduate engineering courses, students have very little 

understanding of how to create requirement statements or why they are necessary. Within the 

context of the systems framework in this paper, they are presented as one of the first steps 

towards synthesizing the Physical Architecture. The authors are defining technical 

requirements of the system as descriptions of the interactions in finer detail with quantitative 

or measurable values. The technical requirements are realized as text statements that help 

define the characteristics of the system in clear and quantitative terms so that it can be properly 

designed and realized (Schindel 2005a). 

The term “requirements” can be used in several different ways in the systems engineering 

community. What are defined as stakeholder features in this paper can sometimes be called 

requirements because they describe characteristics that the stakeholders want to see fulfilled. 

While describing value to the stakeholder, those feature definitions are usually not described 

in scientific or engineering language and so they are not as useful for engineers to create a 

physical implementation of the system. A distinction is also made between design constraints 

, which describe limitations imposed by stakeholders, and technical requirements, which 

describe relationships between actors and the system or function blocks. A common example 

that students face is that the client may specify that the problem be solved with a particular 

piece of hardware. This request would be considered a design constraint because it limits the 

solution space rather than specifying a relationship. In addition to specific client requests, other 

common design constraints include standards and limitations imposed by regulatory agencies.  

The process of creating technical requirements is first presented for the black-box level by 

systematically describing each of the interactions at the system boundary. Each of those 

interactions can be traced in the functional architecture from an actor into the system, from the 

system to an actor, or as a combination of both. Theoretically, it should not matter how a system 

is implemented, as long as it satisfies all of the black-box requirements, it should implement 

all of the stakeholder features. 

 
Interaction Block ID Requirement Feature(s) Verified By 

Recharge the 

Battery 

Wall 

Outlet 

System 

RB-1 The Wall Outlet must provide 

an Electrical Power In at a 

[Wall Voltage of 120VRMS]. 

Rechargeable Instrument test 

Recharge the 

Battery 

System 

User 

RB-2 When charged, the remote 

should produce a flashing 

Battery charge indicator with a 

[Charging Symbol of a filling 

battery] and a [Minimum 

brightness of 10 lumens]. 

Rechargeable 

Usable 

Demonstration 

Instrument test 

Figure 7. Example of a how the Technical Requirements can be derived from the Interactions 

and the Functional Architecture. 



 

 

For the remote control example, Figure 7 illustrates two possible technical requirements that 

describe the “Recharge the Battery” interaction. Note that in addition to the actual description 

of the technical requirement, several other columns are included in order to facilitate the cross-

checking of different views of the system. The Interaction column is included in order to ensure 

that every interaction is addressed. The Block column is included to ensure that every Actor is 

included in at least one technical requirement. An ID is given to more easily refer to a specific 

requirement because many technical requirements can be generated. The requirement 

description has a special syntax in order to more easily extract information for cross checking. 

The I/Os that are involved in the requirement are underlined. The attribute of the requirement 

that is being evaluated and its measurable value is contained in square brackets []. The 

relationship between the system and the involved actor(s) is italicized. The Feature(s) column 

is included to ensure that every stakeholder feature is addressed by at least one technical 

requirement. 

Emphasis is placed on the idea that each technical requirement must also be measurable and 

testable. The Verified By column in Figure 7 requires students to provide a method for 

verifying each technical requirement. For example, requirement RB-1 will be verified by 

instrument test of the wall outlet. In order to orient them on the level of detail required at this 

level of the design process, students are provided some examples of possible verification 

strategies: inspection, instrument test, analysis and simulation, or demonstration. 

The number of black-box requirement statements that are necessary to fully describe a system 

is highly contextual. The authors have found the general guideline of 10-30 requirements to be 

helpful to students. Fewer than 10 indicates that the students likely have not thoroughly thought 

through the problem. More than 30 indicates that the students are likely thinking at too low of 

a level or made the requirements more specific than they need to be. In which case, it may be 

possible to combine some of the requirement statements in order to simplify record keeping.  

A set of binary rubrics similar to Table 3 were also developed for the Technical Requirements 

model. These rubrics help students to ensure that 1) each requirement contains at least one I/O, 

2) each requirement has a measurable value, 3) each I/O is included in at least one requirement, 

4) each interaction is described by at least one requirement, 5) each feature is covered by at 

least one requirement, and 6) each requirement has a verification measurement. The qualitative 

goal is to ensure that the requirements are sufficient to satisfy the feature set and that each 

requirement is achievable.  

Function Decomposition and Synthesis of a Physical Architecture 

The high-level system models that have been described thus far are useful to gain a general 

understanding of the system and to ensure that the system description adequately addresses the 

stakeholder features. However, if the system is to be implemented, a physical implementation 

of the system must eventually be created. If the system is complicated enough, the high-level 

views may not have sufficient detail for the students to understand how to implement each 

system function. It may be necessary to first decompose (divide into smaller sub-systems) the 

high-level Functional Architecture into more basic functions while also including more detail 

in each of the I/Os between actors and function blocks. 

An illustration of a decomposition based on the remote control example is provided in Figure 

8 for the “Control Battery Charging” function. There are many significant behaviors that are 

modeled by this function such that it would be difficult to produce a physical implementation 



 

without explicitly describing these more basic functions. The emphasis to the students is to 

ensure that the decomposed functions are still equivalent to the higher-level functional block. 

One way to do this is to ensure that each I/O of the higher level description is accounted for in 

the decomposed version.  

 
Interaction Block ID Requirement Feature(s) 

Recharge 

the battery 

Wall Outlet 

Control Battery 

Charging 

RBD-1 The Convert AC to DC function must accept  

Electrical Power In at a [Wall Voltage of 

120VRMS] and produce DC Volts at a [Supply 

Voltage of 3VDC]. 

Rechargeable 

Figure 8. Examples of a function decomposition and technical requirement decomposition 

for the remote control example. 

One of the important questions that arises when doing the decomposition is the level of detail 

to which a function should be decomposed. While there is not a single answer to this question, 

any effective answer is going to depend on the particular problem and the experience of the 

engineers trying to solve it. Instead of giving students well-defined boundaries, we present 

more general guidelines and questions for the students to think about. 

1. Can you imagine a way to physically implement a functional block? If not, then the 

block needs to be decomposed further in order to gain that understanding. 

2. Does the name of the functional block uniquely identify each behavior performed 

by that block? If not, then the block may need to be decomposed further to illustrate 

those behaviors.  

3. Are all of the I/Os uniquely identified in the Functional Architecture? If not, then 

further decomposition may be necessary in order to account for them. 

4. What if there are multiple ways to decompose a Function? There is always more 

than one way, the key is to evaluate each approach with respect to the Stakeholder 

Features.  

5. What if you don’t know enough about a Function to decompose it? In order to have 

confidence in a solution, it is effective to know how to decompose a Function at least 

one level further than is necessary for physical implementation. If that knowledge is 

missing, the students should take the appropriate measures to learn it.  

6. It may take an iterative approach. The students may go too far or not far enough for 

the first draft, but continue to revise it with improved experience. 

7. Rely on guidance from a more experienced engineer. Effective decomposition is a 

skill that gets better with practice, thus the students should seek focused advice and 

feedback from those with more experience. 

Once the Functional Architecture has been adequately decomposed, the students can synthesize 

the physical architecture by mapping functions to different physical components. This process 

is typically what comes to mind when students think of “engineering design”, and is usually 



 

where they begin when given an open-ended problem to solve. However, with the systems 

approach, the students begin to see that the physical design is only one view of the solution 

space. If they are ignorant of the other views, there is no way to evaluate the effectiveness of 

the solution or to know if a more optimal solution is available. In the process of synthesizing 

the physical architecture the students are able to explore different implementation options. 

Depending on the type of problem being solved and the time available, they can be explicitly 

asked to evaluate different solutions.      

The technical requirements can also be decomposed along with the functions. An example of 

a decomposed requirement is also shown in Figure 8. At this point some of the details may not 

yet be known, such as the actual quantitative value of the [Supply Voltage] attribute. This is 

the reason for naming the quantitative values with attributes. When the physical design is 

completed the quantitative values can be filled in. 

The rubrics that were presented for the Functional Architecture and the technical requirements 

are also applicable to these steps because system decomposition follows the same process as 

these other steps. 

Conclusions 

The authors have developed a framework for introducing systems concepts to undergraduate 

engineering students. What the authors have found most useful about this approach is the 

limitations imposed on the concepts and models that help students to organize their thoughts 

and efforts. For example, naming functions with a verb followed by a noun phrase is helpful to 

get students to think about high-level behaviors and explore system-level tradeoffs before 

immediately developing a poor quality physical implementation. The rubrics for each model 

also help students to produce much better quality models. The independence of the models on 

the particular problem being solved makes it much easier for faculty to assess a set of vastly 

different projects because the physical structure of the views that the students produce is the 

same. The problem-independence also makes it easier for faculty to teach a common approach 

to problem solving (Simoni 2014, 2015a, 2015b). 

The authors have found it to be overwhelming for students to be exposed to all of these models 

at one time. A scenario that seems to be more effective is to introduce students to the system 

modeling concepts using familiar systems, hence the remote control example. In order for 

students to understand the usefulness of a systems approach, though, it is important for them 

to apply the concepts on an open-ended unfamiliar project of increased complexity. The models 

presented in this paper have been used in senior design, freshman design, Engineering Grand 

Challenges projects, and systems engineering courses. In design courses in which the students 

use the full suite of these models, the focus is on continual iteration of the model to achieve 

greater detail within each model and consistency between the models. The students receive 

feedback and are allowed to revise based on that feedback. The final version is only collected 

and analyzed after many cycles of guided revision. Interim assessment of student work is based 

on how well they respond to the feedback and the quality and timeliness of the revisions they 

make. This system modeling process has improved both the quality of the results of the design 

projects and the students’ understanding of their projects. 

The authors are also developing workshops to inform other faculty of this definition of a 

systems perspective and how to use the different systems model (Simoni 2015a, 2015b). One 

workshop was given at the annual ASEE meeting in 2015 to approximately 40 participants and 

was very well received. Another workshop was provided at the authors’ host institution to 13 

faculty from nine different departments including Math and Physics. Some of the ideas to come 



 

out of that local workshop were to use some of the system models to help students solve word 

problems in mathematics courses and to introduce circuits as behavioral functions in addition 

to studying their electrical properties. One faculty member who attended introduced the models 

to his students in the Principles of Optics course, in which he asked the students to address a 

NASA Challenge problem as the final project. Another idea to come out of the workshops is 

that all the models do not have to be introduced at the same time. By introducing only what is 

necessary to help understand a particular topic, students will see the benefit of using a systems 

perspective.  
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