Lecture	<u>CEE 2105 Learning Outcomes</u> Learning Outcomes
#	
1	• Identify the base units for length, time, mass, and force in the US Customary and SI unit
	systems.
	Convert quantities between two different units.
	 Express a computed value to the appropriate number of significant figures.
2	 Resolve a vector into components in two mutually perpendicular directions.
	• Express a vector in Cartesian form, given information about the angle between the
	vector and coordinate axis.
	• Determine the resultant of two or more vectors by addition of rectangular components.
3	
4	• Calculate the moment of a force or set of coplanar forces about a point by scalar
_	methods.
5	Calculate the moment of a couple or set of coplanar couples by scalar methods.
6	Solve for unknowns in a 2-D particle equilibrium problem.
7	 Solve for unknowns in a 2-D particle equilibrium problem. (repeat)
	Explain the difference between analysis and design.
8	 Define factor of safety. Identify reaction forces and moments associated with different idealized support
o	conditions.
	 Construct a free body diagram for a rigid body.
9	 Solve for unknowns in a 2-D rigid body equilibrium problem.
10	 Solve for unknowns in a 2-D rigid body equilibrium problem. (repeat)
10	 Classify a rigid body as statically determinate, statically indeterminate, partially
	constrained, or improperly constrained.
	 Recognize a two- or three-force body and identify the lines of action of all forces on such
	a body.
	 Identify the assumptions used for analysis and design of trusses.
11	Identify zero force members in a truss by inspection.
	• Solve for unknown forces in a truss using the method of joints.
12	• Solve for unknown forces in a truss using the method of sections.
13	 Calculate the average normal stress acting on a cross-section.
	Calculate the average shear stress acting on a cross-section.
14	 Identify key components of an open web steel joist.
	 Solve for unknown forces in a truss using the method of joints. (repeat)
	 Solve for unknown forces in a truss using the method of sections. (repeat)
	 Calculate the average normal stress acting on a cross-section. (repeat)
	Compute actual factors of safety and/or stress ratios.
	Predict the maximum design capacity and failure load of a simple structure given
15	allowable stresses and factors of safety.
15	 Determine the load capacity of a simple connection given a set of allowable normal, shear, and/or bearing stresses.
	 Design a simple connection for a given load and set of allowable normal, shear, and/or
	bearing stresses.
16	 Calculate the average normal strain acting on a cross-section.
10	 Calculate the average shear strain acting on a cross-section.
17	 Explain the methodology for determining stress and strain experimentally.
	 Identify the important elements of a stress-strain diagram.
	 Identify and apply Hooke's Law.
	 Compute the modulus of elasticity, yield stress, and ultimate stress from a stress-strain
	curve.
	Characterize the difference between ductile and brittle behavior.
	• Calculate the percent area reduction and percent elongation from a tension test.
18	• Compute the following from experimental tension test data: strain energy, modulus of
	resilience, modulus of toughness, Poisson's ratio, and modulus of rigidity.

CEE 2105 Learning Outcomes

19	Identify the six steps related to the production of steel.
15	 Identify the methodology for manufacturing steel using a Basic Oxygen Furnace.
	 Describe the difference between a Basic Oxygen and an Electric Arc Furnace.
	 Define the terms "slag" and "mini-mill".
20	Calculate the elastic displacement of an axially loaded member.
20	 Apply data from a tension test to solve an engineering problem.
21	 Identify the structural layout of the Brandywine bridge.
	 Conduct a Charpy impact test and analyze data to determine the impact energy of a steel
	alloy.
	 Identify the effect of temperature on the impact energy.
	 Characterize relative ductility from failed Charpy specimens.
22	 Solve for unknowns in a statically indeterminate problem involving axial displacements.
23	 Solve for unknowns in a statically indeterminate problem using superposition and the
25	Force Method.
24	Solve for unknowns in a problem involving thermal effects.
25	Overarching problem: see previous lecture learning outcomes
26	 Solve for unknown forces and residual stresses in a problem involving elastic-perfectly
20	plastic material behavior.
27	• Determine kinematic properties (acceleration, velocity, distance, or time) for a particle
	or system of particles using the equations of motion in rectangular coordinates.
28	• Explain graphically the relationship between, static friction, maximum static friction, and
	kinetic friction.
	• Determine whether or not an object remains in static equilibrium under a given set of
	loads.
	Determine kinematic properties (acceleration, velocity, distance, or time) for a particle
	or system of particles using the equations of motion in rectangular coordinates. (repeat)
29	Determine whether or not an object remains in static equilibrium under a given set of
	loads. (repeat)
	• Determine kinematic properties (acceleration, velocity, distance, or time) for a particle
	or system of particles using the equations of motion in rectangular coordinates. (repeat)
	Design a simple experiment to determine unknown quantities.
30	• Solve for unknown parameters in a problem involving the impending motion of a body.
	Identify the basic characteristics of a gravity dam.
31	Develop force and couple resultants to represent a system of forces and couples.
32	Determine the magnitude, direction, and location of a single force to represent a system
	of coplanar forces and couples.
	Determine the magnitude and location of a single force to represent a system of parallel
	forces.
33	Determine the magnitude and location of an equivalent concentrated force to represent
	a simple distributed force pattern.
34	 Define the terms center of gravity, center of mass, and centroid.
	Determine the centroid of an area by integration.
35	Determine the centroid of a line segment by integration.
	Determine the centroid of a volume of revolution by integration.
	Determine centroidal axes of a shape by symmetry.
36	• Determine the magnitude(s) and location(s) of an equivalent concentrated force(s) to
	represent a fluid pressure.
37	Determine the centroid of a composite area.
38	Determine the centroid of a composite area. (repeat)
	Determine the centroid of a composite line segment.
	Determine the centroid of a composite volume.
	Determine the center of gravity of a non-homogeneous composite body.
39	• Determine the moment of inertia of an area about a specified axis by direct integration.
40	Overarching problem: see previous lecture learning outcomes

41 • Determine the moment of inertia of an area about a specified axis by direct integr (repeat) • Determine the moment of inertia of an area about a specified axis using the Paralle Theorem. 42 • Determine the moment inertia of a composite area about a specified axis. 43 • Identify the basic design characteristics for a water tower. 44 • Calculate the critical buckling load for a simple pin-connected structure usin equilibrium analysis. • Explain the relationship between length and critical buckling load for a pin- compression member. 45 • Explain the relationship between section properties and critical buckling load for ended compression member. 46 • Calculate the critical buckling load for a pin-ended compression member. 46 • Explain the relationship between end conditions and critical buckling load compression member. 46 • Explain the relationship between end conditions and critical buckling load compression member.	el Axis ng an ended a pin- a pin-
 Determine the moment of inertia of an area about a specified axis using the Paralle Theorem. 42 Determine the moment inertia of a composite area about a specified axis. 43 Identify the basic design characteristics for a water tower. 44 Calculate the critical buckling load for a simple pin-connected structure usin equilibrium analysis. Explain the relationship between length and critical buckling load for a pin-compression member. 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	ng an ended a pin- a pin-
 Theorem. 42 • Determine the moment inertia of a composite area about a specified axis. 43 • Identify the basic design characteristics for a water tower. 44 • Calculate the critical buckling load for a simple pin-connected structure usin equilibrium analysis. • Explain the relationship between length and critical buckling load for a pin-compression member. 45 • Explain the relationship between section properties and critical buckling load for ended compression member. • Explain the relationship between material properties and critical buckling load for ended compression member. • Calculate the critical buckling load for a pin-ended compression member. • Calculate the critical buckling load for a pin-ended compression member. • Calculate the critical buckling load for a pin-ended compression member. • Calculate the critical buckling load for a pin-ended compression member. • Calculate the critical buckling load for a pin-ended compression member. • Calculate the critical buckling load for a pin-ended compression member using the buckling formula. • Explain the relationship between end conditions and critical buckling load compression member. 	ng an ended a pin- a pin-
 42 Determine the moment inertia of a composite area about a specified axis. 43 Identify the basic design characteristics for a water tower. 44 Calculate the critical buckling load for a simple pin-connected structure usin equilibrium analysis. Explain the relationship between length and critical buckling load for a pin-or compression member. 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	a pin- a pin-
 43 Identify the basic design characteristics for a water tower. 44 Calculate the critical buckling load for a simple pin-connected structure usin equilibrium analysis. Explain the relationship between length and critical buckling load for a pin-compression member. 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	a pin- a pin-
 44 Calculate the critical buckling load for a simple pin-connected structure usin equilibrium analysis. Explain the relationship between length and critical buckling load for a pin-compression member. 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member. Explain the relationship between end conditions and critical buckling load compression member. 	a pin- a pin-
 equilibrium analysis. Explain the relationship between length and critical buckling load for a pin-or compression member. 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	a pin- a pin-
 Explain the relationship between length and critical buckling load for a pin-or compression member. 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	a pin- a pin-
 compression member. 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	a pin- a pin-
 45 Explain the relationship between section properties and critical buckling load for ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	a pin-
 ended compression member. Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	a pin-
 Explain the relationship between material properties and critical buckling load for ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. Explain the relationship between end conditions and critical buckling load compression member. 	
 ended compression member. Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	
 Calculate the critical buckling load for a pin-ended compression member using the buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	Euler
 buckling formula. 46 Explain the relationship between end conditions and critical buckling load compression member. 	Euler
46 • Explain the relationship between end conditions and critical buckling load compression member.	
compression member.	
	for a
 Determine the effective length for a compression member with specified end condi 	
Calculate the critical buckling load for a compression member using the Euler bu	ckling
formula and appropriate effective slenderness ratio.	
• Explain the difference between elastic buckling and inelastic buckling.	
 Calculate the critical buckling load for a compression member using the modified 	Euler
buckling formula with a tangent modulus.	
48 Overarching problem: see previous lecture learning outcomes	
49 • Construct a position vector of one point relative to another using the coordinates	of the
two points in space.	
 Express a force as a Cartesian vector using a position vector along the line of act 	ion of
the force.	
• Calculate the moment of a force about a point by vector methods.	
 Calculate the moment of a force about a specified axis by vector methods. 	
 Solve for unknowns in a 3-D particle equilibrium problem. 	
52 • Identify reaction forces and moments associated with different 3-D idealized su	pport
conditions.	
 Solve for unknowns in a 3-D rigid body equilibrium problem. 	
 Solve for unknowns in a 3-D particle equilibrium problem. (repeat) 	

Green = Secondary Outcome (tools, intermediate calculations, and concepts) Red = Primary Outcome (application problems)

<u>Primary Outcomes</u> are more comprehensive and build upon the secondary learning outcomes. *Exam questions will be based on the primary outcomes, with secondary outcomes incorporated as appropriate.*