

Wallace H. Coulter Department of **Biomedical Biomedical Biomedical Biomedical Biomedical Biomedical Biomedical**

BMED 2110: CONSERVATION PRINCIPLES IN BIOMEDICAL ENG

DR. MAYSAM NEZAFATI

INTRODUCTION TO MODELS

SPRING 2021

CREATING THE NEXT®

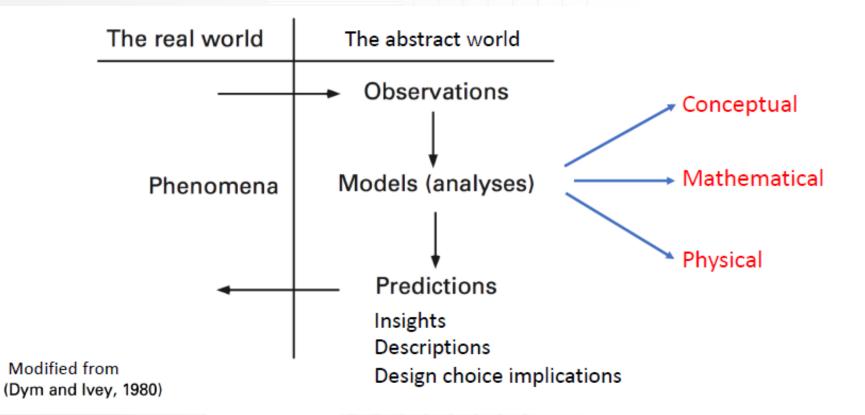
OUTLINE

- Project Rationale
- Models: Conceptual vs Mathematical
- Where are we in our project status
- Important note about specification grading
- Project's Rubric (see Video B)
- Notes about citation

DESCRIBE YOUR SEMESTER SO FAR IN A WORD

Wallace H. Coulter Department of Biomedical Engineering

ENGINEERS AND MODELS

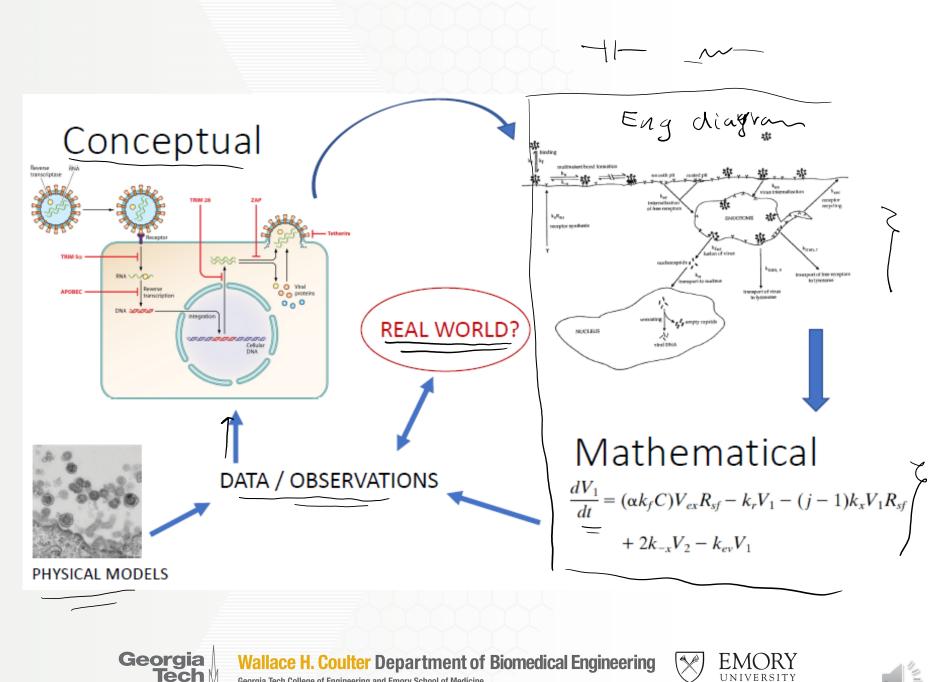

- Engineers DESIGN devices, processes and systems.
- To design these, engineers use MODELS to describe, explain and predict the behavior of these devices, processes and system.
- These are two distinguishing features of engineering: Design and Model-based reasoning.

HOW ENGINEERS KNOW WHAT THEY KNOW

YOU WILL SEE MODELING MULTIPLE TIMES

Conceptual	Mathematical	Physical/	Physical
		for experiments	for design
BMED 3100	BMED 2110 7	BMED 3110	BMED 2250
BMED 3600	BMED 2400	BMED 3610	BMED 2310
BMED 2250	BMED 3310		BMED 4602
	BMED 3400		
	BMED 3520		

Wallace H. Coulter Department of Biomedical Engineering


WHAT IS A MODEL?

- A simplified representation of a real-world situation used to help answer a simplified question.
- Simplifying: It is important to preserve the properties of the system that are relevant to the question.
- Detail vs complexity: A good model has as low complexity as possible while retaining the relevant details needed to answer the specific question the model is designed to examine.

THE FULL MODEL AND AN EXAMPLE OF ITS USE

$$\begin{split} & \mbox{Table I.} \quad \mbox{Analytical solutions of trafficking model when receptors are excess.} \\ & \mbox{$V_{ex} = V_{exo}e^{-k_{x}C}$} \\ & \mbox{$V_{ex} = \frac{k_{x}CV_{exo}}{k_{ex} - k_{a}C}(e^{-k_{x}C} - e^{-k_{x}f})$} \\ & \mbox{$V_{int} = \frac{V_{exo}}{k_{ex} - k_{a}C}[k_{a}C(e^{-k_{x}C} - 1) - k_{er}(e^{-k_{x}C} - 1)]$} \\ & \mbox{$V_{int} = \frac{V_{exo}}{k_{er} - k_{a}C}[k_{a}C(e^{-k_{x}f} - 1) - k_{er}(e^{-k_{x}C} - 1)]$} \\ & \mbox{$V_{existonere} = 8V_{exo}\left[\frac{1}{\alpha}\left(e^{-k_{x}C} - e^{-qt}\right) - \frac{1}{\theta}\left(e^{-k_{x}f} - e^{-qt}\right)\right]$} \\ & \mbox{$V_{existonere} = 8k_{fav}V_{exo}\left[\frac{1}{\alpha}\left[\frac{1}{k_{a} - k_{a}C}\left(e^{-k_{x}c} - e^{-qt}\right) - \frac{1}{k_{a} - \varphi}\left(e^{qt} - e^{-k_{x}f}\right)\right] - \frac{1}{\theta}\left[\frac{1}{k_{x} - k_{er}}\left(e^{-k_{x}f} - e^{-k_{x}f}\right) - \frac{1}{k_{a} - \varphi}\left(e^{-k_{x}f} - 1\right)\right] - \frac{1}{\theta(k_{a} - k_{er})}\right]$} \\ & \mbox{$V_{existonere} = 8k_{a}k_{fav}V_{exo}\left\{\frac{1}{\alpha}\left(\frac{1}{k_{a} - k_{a}C}\left(1 - e^{-k_{x}f}\right) + \frac{1}{k_{a}}\left(e^{-k_{x}f} - 1\right)\right] - \frac{1}{\alpha(k_{a} - \varphi)}\left[\frac{1}{\varphi}\left(1 - e^{-4r}\right) + \frac{1}{k_{a}}\left(e^{-k_{x}f} - 1\right)\right] - \frac{1}{\theta(k_{a} - k_{er})}\right]$} \\ & \mbox{$\left[\frac{1}{k_{er}}\left(1 - e^{-k_{x}f}\right) + \frac{1}{k_{u}}\left(e^{-k_{u}f} - 1\right)\right] + \frac{1}{\theta(k_{a} - \varphi)}\left[\frac{1}{\varphi}\left(1 - e^{-4r}\right) + \frac{1}{k_{a}}\left(e^{-k_{x}f} - 1\right)\right]\right]$} \\ & \mbox{$\delta = \frac{k_{ex}k_{a}C}{k_{ex} - k_{a}C}; \alpha = k_{fav} + k_{reav,v} - k_{a}C; \varphi = k_{fav} + k_{reav,v}; \theta = k_{fav} + k_{reav,v} - k_{ev}}$} \end{cases}$$

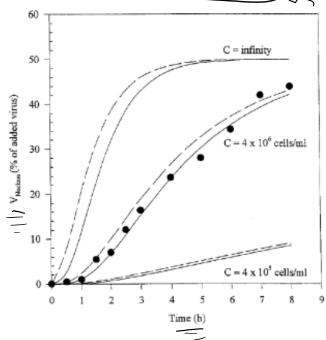
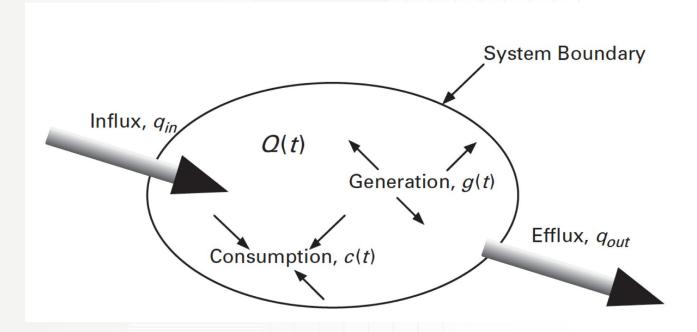


Figure 3. Sensitivity analysis of k_n . The kinetics of nuclear accumulation was simulated with Eq. 17 using $k_a = 1.3 \times 10^{-9} \text{ cm}^3/\text{cell}\cdot\text{min}$, $k_{ev} = 0.023 \text{ min}^{-1}$, $k_{fus} = 0.01 \text{ min}^{-1}$, and different k_n and cell densities. (---) $k_n = 0.04 \text{ min}^{-1}$; (---) $k_n \to \infty$; (•) experimental data at 4×10^6 cells/mL.



WHERE DO WE USUALLY BEGIN?

• When we develop mathematical models, we often begin with statements that indicate that some property of an object or system is being conserved.

Conceptual models

- Theoretical constructs that visually represent the processes, relationships, and variables considered important to the question at hand
- Provide insight into why a given situation exists and/or what its driving factors are
- Do not provide specific numerical results – they can't be run or used to test hypotheses

Mathematical models

diagram + equation

- Uses the language and tools of mathematics to describe our theoretical understanding – our model – of how a system works
- Describes the system with a set of variables and equations that establish quantitative relationships between these variables
- Are executable: they can be "run" and therefore used to study the implications of our theoretical understandings on the systems' behavior

Wallace H. Coulter Department of Biomedical Engineering

Pre-work

- Brainstorming: (finding three cases of bias)
- Story 1 Motivation: (a story about personal experience)

Phase 1

- Product 1: a case study and a conceptual model <u>Deadline: 3/8</u> 8:00 pm
- Story 2 Public awareness: (a story about the case you found to increase awareness of general audience Deadline: 3/8 8:00 pm

Phase 2

- Product 2: engineering analysis and proposing technical solutions to the issue
 Deadline: 4/22 8:00 pm
- Story 3 Expert solution: (a story about your case and how you are proposing the solution to the issue) <u>Deadline: 4/22</u> 8:00 pm

Presentation

 Presentation: a 2 mins video sharing the findings and the suggestions you have (What you learned and what you suggest.) <u>Deadline: 4/22</u> 8:00 pm

Wallace H. Coulter Department of Biomedical Engineering

SPECIFICATION GRADING

- Each assignment's rubric consists of sections (level 1) and criterion (level 2).
- You will be graded based on level 2, specifications (criteria).
- You should have a satisfactory level of contents to get passing grade for each specification.
- The grade for specifications is pass/fail, there is no partial credit within specifications.
- Prepare your draft by Next Monday so you can check it on Monday and Tuesday.

ACCEPTANCE LEVEL (SATISFACTORY LEVEL)

- 1. Ready as is to be presented in a student based, research conference such BMES student section or PURA research symposium
- 2. With minor modification it will be presentable to a student symposium
- 3. With changing of some features it can be presented
- 4. It can not be presented unless a significant portion of it should be changed or re done.
- 5. fundamental scientific and technical issues exists in the analogy which requires re doing of project.

HOW TO USE AND CITE A PAPER

- In text mentioning of the paper: You should cite the paper you used in your manuscript, by by mentioning name of the author and the year of publication. Example: (Collino, 2013).
- Bibliography (or list of references)

Georgia

Collino, M., Benetti, E., Rogazzo, M., Mastrocola, R., Yaqoob, M. M., Aragno, M., & ... Fantozzi, R. (2013). Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation. *Biochemical Pharmacology*, *85*(2), 257-264. doi:10.1016/j.bcp.2012.10.014

> Wallace H. Coulter Department of Biomedical Engineering Georgia Tech College of Engineering and Emory School of Medicine

TAKE THE FOLLOWING ASSESSMENT

 To confirm that you have fully understood these concepts we want you to participate in the following self assessment:

https://gatech.co1.qualtrics.com/jfe/form/SV_erqqQwxEg8YSyii

