Lehigh University - Department of Mechanical Engineering and Mechanics

MECH 12 – Strength of Materials

Class Meetings: Mon., Wed., & Fri. (9:10 – 10:00 AM; WH 203) Instructor: Prof. Webb (PA 265) Office Hours:

Office Hours: please email to schedule

TAs: I-Han Liu and Abdullah Alghafis

Textbook: Beer, Johnston, DeWolf, and Mazurek, *Mechanics of Materials*, 7th ed. McGraw-Hill, 2014.

N 0	Day	Date	Topic to be Covered	Reading	HWK Assigned	Assignments Due
1	М	Aug. 24	Review of Axial Stress, Strain,	Chapter 1;	W1, 2.24, 43	Duc
1	1 V1	Aug. 24	and Deformations	2.1-2.2	W 1, 2.24, 4J	
2	W	Aug. 26	Finite Element Method	Notes #1	1, 2 (Notes #1)	W1, 2.24, 43
-		1148.20	Introduction; Element Stiffness	(pp. 1 - 3)	1, 2 (1000 11)	,, 1, 2.2 ,, 10
			Matrix for 1-D Bar	(FF)		
3	F	Aug. 28	Global Stiffness Matrix for 1-D	Notes #1	3, 4	1, 2 (Notes #1)
		C	Bar	(pp. 3 – 9)		
4	М	Aug. 31	Wrap-up 1-D Bar FEM; Matlab	Notes #1a;	5, W2	3, 4
		_	System of Equation Solver;	Notes #2		
			Intro to 2D Truss Elements	(pp. 1-4)		
5	W	Sep. 2	2-D Element Stiffness Matrix for	Project 1a	1, 2 (Notes #2)	5, W2
			Trusses; Project 1a Assigned	Description		
6	F	Sep. 4	Global Stiffness Matrix for	Notes #2	3, 4, 5	1, 2 (Notes #2);
			Trusses; Proj. 1b Assigned	(pp. 5 – 12)		Proj. 1a
7	Μ	Sep. 7	2D Truss Elements and Reaction	Notes #2a;	W3	3, 4, 5
			Forces; Truss Analysis using	Tutorial #1		
			Autodesk Sim. Mechanical®			
8	W	Sep. 9	Review of Beam Bending;	4.1-3;	4.3, 11, 19	W3;
			Project 1c Assigned	Appendix A		Project 1b
9	F	Sep. 11	Composite Beams	4.4 and	4.38, 41, 56	4.3, 11, 19
10		~		Notes #3		
10	Μ	Sep. 14	Plastic Deformation of Beams;	4.6-4.6A	4.71, 76, 80	4.38, 41, 56
11	** *	Q 16	Project 1d Assigned		4.05.00.00	Project 1c
11	W	Sep. 16	Plastic Collapse and Residual Stresses	4.6B-4.6C	4.85, 90, 92	4.71, 76, 80
12	F	Sep. 18	Eccentric Axial Loading	4.7	4.103, 106, 115	4.85, 90, 92 Project 1d
	М	Sep. 21	** Class canceled **			110jeet 1u
13	W	Sep. 23	General Eccentric Axial Loading	4.9	4.144, 146, 149	4.103, 106, 115
14	F	Sep. 25	Wrap-up Chapter 4	1.5	, 110, 119	4.144, 146, 149
15	M	Sep. 28	Review			,,,
	W	Sep. 30	4 o'clock Exam No. 1 (during			
			class)			
16	F	Oct. 2	Transverse Loadings on Beams	6.1A	6.2, 3, 6	
17	М	Oct. 5	Shearing Stresses in Beams	6.1B-6.1C	6.13, 22, 24, 26	6.2, 3, 6
18	W	Oct. 7	Longitudinal Shearing Stresses in	6.3-4	6.30, 34, 36	6.13, 22, 24, 26
			Beams; Thin Walled Beams			

Fall 2015

19	F	Oct. 9	Stress under Rotation of Axes	7.1	7.6, 10, 15, 20	6.30, 34, 36
	Μ	Oct. 12	*** Pacing Break ***			
20	W	Oct. 14	Mohr's Circle for Stress in 2-D	7.2	7.42, 48, 52	7.6, 10, 15, 20
21	F	Oct. 16	Principal Stresses in 3-D	7.3-4	7.66, 73, 77	7.42, 48, 52
22	М	Oct. 19	Yield Criteria for Ductile Metals	7.5A	7.83, 84, 85, 86	7.66, 73, 77
23	W	Oct. 21	Thin-walled Pressure Vessels	7.6	7.119, 122, 125	7.83, 84, 85, 86
24	F	Oct. 23	Stresses under Combined Loading	8.3	8.37, 39, 40	7.119, 122, 125
25	М	Oct. 26	Stresses under Combined Loading (cont.)	8.3	8.41, 44, 51	8.37, 39, 40
26	W	Oct. 28	Project discussion; conclude combined loading			8.41, 44, 51
27	F	Oct. 30	Shear and Bending Moment Diagrams; Design of Beams	5.1-3	5.155, 5.157 6.18	
28	М	Nov. 2	Review			5.155, 5.157 6.18
	W	Nov. 4	4 o'clock Exam No. 2 (during class)			
29	F	Nov. 6	Singularity Functions and Shear/Moment Diagrams	5.4	5.99, 103, 105	
30	М	Nov. 9	Beam Deflections by Integration	9.1	9.7, 11, 18	5.99, 103, 105
31	W	Nov. 11	Singularity Function Method	5.4, 9.3	9.36, 43, 45	9.7, 11, 18
32	F	Nov. 13	Statically Indeterminate Beams I	9.2	9.23, 26, 27	9.36, 43, 45
33	М	Nov. 16	Statically Indeterminate Beams II; Programming Load/Deflection Curves	9.2	9.49, 52, 56	9.23, 26, 27
34	W	Nov. 18	Beam Deflection by Superposition	9.4 Tutorial #2	9.65, 78, 82	9.49, 52, 56
35	F	Nov. 20	Discuss Project 2, Stage 2	Notes #4		9.65, 78, 82
36	М	Nov. 23	2-D Elasticity and Stress	2.11, 3.5,	2.100, 3.86,	
			Concentration Factors using Tables & FEM (A. S. M. ®)	4.5, and Tutorial #3	4.62 Quiz 11	
	W, F	Nov. 25, 27	*** Thanksgiving Break ***	1 4101141 // J	Zuiz II	
37	M	Nov. 30	Elasticity and Thick-Walled Cylinders	Notes #5	1, 2	2.100, 3.86, 4.62, Quiz 11
38	W	Dec. 2	Stresses in Thick-Walled Cylinders	Notes #5	3, 4	1, 2
39	F	Dec. 4	Review			3, 4
	Tue.	Dec. 8	Final Exam 12 – 3 PM (TBD)			

Supplemental Notes and Tutorials will be made available on CourseSite; as referred to in the syllabus, they are: Notes #1 – Finite Element Method for 1D Bars Notes #1a – Global K Construction Example for 1D Bars

Notes #2 – Finite Element Method for 2D Trusses

Notes #2a – Global K Construction Example for 2D Trusses

Notes #3 – Bending of Composite Beams Notes #4 – Finite Element Method for Beams Notes #5 – Thick Walled Cylinders Tutorial #1 – Truss FEM Analysis in **Autodesk Mechanical** ® Tutorial #2 – Beam FEM Analysis in **Autodesk Mechanical** ® Tutorial #3 – 2D Elasticity Models in **Autodesk Mechanical** ® Homework problems from the *Supplemental Notes* will be found at the end of each set of notes.

Grading: Final exam – 30%, Hourly exams – 30%, Projects – 15%, Miniquizzes – 15%, Homework –5%, Class Activities – 5%.

Accommodations for Students with Disabilities: If you have a disability for which you are or may be requesting accommodations, please contact both your instructor and the Office of Academic Support Services, University Center 212 (610-758-4152) as early as possible in the semester. You must have documentation from the Academic Support Services office before accommodations can be granted.

Lehigh University endorses The Principles of Our Equitable Community (http://www4.lehigh.edu/diversity/principles). We expect each member of this class to acknowledge and practice these Principles. Respect for each other and for differing viewpoints is a vital component of the learning environment inside and outside the classroom.