General Card #1851
PBL, Fluid Mechanics, & Uncle Mort
Summary
Teams design most cost-effective water delivery system based on customer needs.
Description
This is a problem-based learning (really entrepreneurially minded learning) project for a junior level fluid mechanics course. Students perform customer interviews with the professor to understand customer needs, identify the necessary system components, and design a fluid delivery system. The project was assigned in multiple sections of the course with 15-40 students, but could work in a class of any size. Students worked in teams of 2-4. The majority of the project was completed outside of class over the course of 4-5 weeks, although some class sessions were devoted to helpful input and team discussion. To assure student success, all teams should meet with the professor during the course of the project.
The problem described is to design an appropriate water supply system from a lake to an elevated location. While the problem statement indicates water needs for a small cottage, the students must also consider later upgrades for an entire hotel. The technical challenge is to create a fluid delivery system including pipes, pumps, and the various components typical of such systems that meet customer needs. A “hidden” opportunity is embedded in the problem statement to create a system which is significantly cheaper by strategically using the full potential of the described terrain and certain times of day for pump usage. The project includes a preliminary “first week” reply, preliminary report, and final design report.
Learning Objectives
• Design a pipe system and choose an appropriately sized pump for the given fluid needs.
• Distinguish the difference between pipe component options and pump options to minimize fabrication and operational cost.
• Identify an alternate design (i.e., an opportunity) which will create higher value over traditional design.
Instructor Tips
- The instructor will need to “wear two hats” during the course of the project. You will need to answer questions from the customer point-of-view as well as questions posed to an expert (i.e., you the instructor). Be sure to ask the student to whom their question is being addressed.
- Remember to keep the students focused on fluid mechanics and the customer’s wants. This project can become enormous if not contained. Just have the students cover the basics.
- I have found that mentioning a few key facts about pumps saves lots of time (i.e., reduces some hardship) for the teams and relieves the instructor from answering the same basic questions for each team.
- Remind the students at nearly every class period over the multi-week span of the project work that they need to ask questions of the customer.